SimCheck : An Expressive Type-system for
Simulink '

Pritam Roy'! Natarajan Shankar?

University of California, Los Angeles'
SRl International®

April 14, 2010

'supported by NSF Grant CSR-EHCS(CPS)-0834810 and NASA
Cooperative Agreement NNX08AY53A

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

Outline

0 Introduction

Pritam Roy, N An Expressive Typ stem for Simulink

Introduction

Simulink as a Model
Type Checking

Simulink as Modeling Tool

@ Matlab/Simulink is very popular modeling language in the industry

@ Language of choice to design a complex embedded or control system
@ Easy to draw lines and boxes - drag and drop

@ A comprehensive set of function blocks

SimCheck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

Simulink as Modeling Tool

@ Matlab/Simulink is very popular modeling language in the industry

@ Language of choice to design a complex embedded or control system
@ Easy to draw lines and boxes - drag and drop

@ A comprehensive set of function blocks

Figure: M7 Surgical Robot Arm Figure: Simulink Model of M7

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

Simulink Semantics

@ A Simulink model is represented graphically by means of a number of
interconnected blocks.

@ Lines between blocks connect block outputs to block inputs and
represent data flow signals.

@ Blocks can be built from a large number of predefined library blocks,
which can be nested in an arbitrary manner,

-
0
=]

sumi .
+
+ ﬂ_I

5 Add l Add1 Addz

eck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

Simulink Semantics

@ Blocks may have states, which may consist of a discrete-time and a
continuous-time part.

@ The output of a block is computed by an output function, based on its
input and its current state and time.

@ An update function calculates the next discrete state.

Pritam Roy, N. kar SimCheck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

Why Type Checking is Important ?

@ type of a variable provide an abstraction of the data values the variable
can store

@ type checking : process of verifying and enforcing the constraints of
types

@ expressive type-checking catches most of the bugs eagerly (avoid
crashing during execution)

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

Types in Simulink

@ basic types are Bool, sighed and unsigned integer types, tuples, vectors
and matrices, and strings.

@ Default type is double
@ Ports in a block and connectors have types.

12 boolean >

w

Comp2

12.8

double

poolean o
> -

- <=12
Constant

Compl Subtract

Pritam Roy, i eck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

Types in Simulink

@ basic types are Bool, sighed and unsigned integer types, tuples, vectors
and matrices, and strings.

@ Default type is double
@ Ports in a block and connectors have types.

12 boolean >

w

Comp2

12.8

double

poolean o
> -

- <=12
Constant

Compl Subtract

@ has a limited capability for checking type correctness.
@ no systematic design-by-contract capability for Simulink.

Pritam Roy, i eck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

What we need?

We need a capability that uses contracts to carry out
@ Type inference for basic types,

@ Annotate links with expressive types (over values, dimensions and units
of physical variables)

@ Generate test cases,

@ Capture interfaces and behaviors,

@ Monitor type conformance, and

@ Verify type correctness relative to such expressive types

eck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

What we need?

We need a capability that uses contracts to carry out
@ Type inference for basic types,

@ Annotate links with expressive types (over values, dimensions and units
of physical variables)

@ Generate test cases,

@ Capture interfaces and behaviors,

@ Monitor type conformance, and

@ Verify type correctness relative to such expressive types

The SimCheck type system/tool can be used to specify and verify these
requirements.

SimCheck : An Expressive Type-system for Simulink

Introduction

Simulink as a Model
Type Checking

SimCheck Framework

ulation Format Tools | Help
Simulink Debugger..
Model Advisor...

Model Dependencies - @ The whole package is built in Matlab language.

Fixed-Point .

e @ integrated the type checker/verifier inside the Matlab
pufde. environment editing customization file

i @ Simulink files have mdl extensions

Control Design
" bataObjectWizad | @ Used simulink APIs to obtain the parameters of blocks and

St connectors

Typechecking Units
User Constraints

Trace Generation
Bounded Model Checking
K-induction

Reset

Pritam Roy, SimCheck : An Expressive Type-system for Simulink

Model Translation to Yices)
Yices

MDL2YICES

Outline

e Model Translation to Yices

Pritam Roy, N. i 5 i stem for Simulink

Model Translation to Yices)
Yices

MDL2YICES

Yices - SMT Solvers

@ SMT is the problem of determining satisfiability of formulas modulo

background theories (e.g. linear arithmetic, arrays, data types, bit
vectors etc.)

@ Yices is an SMT Solver developed at SRI International.

@ The input language of the Yices language in the semantics of a divide

block:

(define Divide ::(-> real real real))

(define DivideInl :: real)

(define DivideIn2 ::(subtype (n :: real) (/= n 0)))
(define DivideOut :: real)

(assert (= DivideOut (Divide DivideInl DivideIn2)))

Pritam Roy,

eck : An Expressive Type-system for Simulink

Model Translation to Yices)
Yices

MDL2YICES

Basic Blocks

For example, Constant block is translated as

Censtant (define ConstantOutltimel :: real)

(assert (= ConstantOutltimel 1))

Pritam Roy, i eck : An Expressive Type-system for Simulink

Model Translation to Yices)
Yices

MDL2YICES

Basic Blocks

For example, Constant block is translated as
Censtant (define ConstantOutltimel :: real)
__i[:] (assert (= ConstantOutltimel 1))

Sum block is translated as

(define SumInltimel :: real)
(define SumIn2timel :: real)
ginJ (define SumOutltimel :: real)
(assert (= SumOutltimel (+ SumInltimel
SumIn2timel)))

eck : An Expressive Type-system for Simulink

Model Translation to Yices)
Yices

MDL2YICES

Memory Blocks

Memory with initial value 70 can be translated to two consecutive clock
cycles as follows:

(define MemoryOutltimel :: real)
(define MemoryInltimel :: real)
(assert (= 70 MemoryOutltimel))
(define MemoryOutltime2 :: real)
(define MemoryInltime2 :: real)
(assert (= MemoryOutltime2 MemoryInltimel))

eck : An Expressive Type-system for Simulink

User Given Types
Unit Checking

Type Annotation and Checking Expressive Type Systems
Compatibility Checking
Test-case Generation

Outline

e Type Annotation and Checking

Pritam Roy, N An Expressive Typ stem for Simulink

User Given Types
Unit Checking

Type Annotation and Checking Expressive Type Systems
Compatibility Checking
Test-case Generation

User Given Types

@ User can annotate the type constraints or constraints on the signals
@ Constraints can be written on the blocks or globally

input :: X

input :: s
output :: ©

type X :: double
type g :: double
type o :: double
unit x :: inch
unit s :: c¢cm
unit © :: m

iinv (/= s 0)
olnv (> o 2)

Type Annotation and Checking

Unit Checking

User Given Types

Unit Checking
Expressive Type Systems
Compatibility Checking
Test-case Generation

For an adder with inputs signals x and s and output o, we obtain

input ::
aieE 88
output ::
:: double
:: double
: double

type
type
type
unit
unit
unit
iinv |
oinv (>

omxonx

X
S
o

:m

inch
cm

(define dist (x)
(define dist (s)
(define dist (o)
(define x: real
(define s:: real
(define o:: real
(assert (= dist(
(assert (= dist(
(assert (= o (+

Pritam Roy,

)
)
)
x
x
(

)
)
*

int)
int)
int)

dist (s)))
dist (0)))
254/10000 x) (%« 1/100 s))))

eck : An Expressive Type-system for Simulink

User Given Types
Unit Checking

Type Annotation and Checking Expressive Type Systems
Compatibility Checking
Test-case Generation

Unit Checking

Display.
x

Fradt

Froucts

Funcioni

eraducts

Constantt

Thganametc Froductl

File Edit View Simulation Fomat Tools Help

unitfsignal) = [dist, mass, tine, terp,cur,sub,lur]

unit(height) = [1,0,0,0,0,0,0]

Constant
unit(Subsystem__c) = [1,0,-2,0,0,0,0]
unit(Subsystem__v0y) = [1,0,-1,0,0,0,0]
Constant! unitfvelocity) = [1,0,-1,0,0,0,0]
unit(Subsystem_time) = [0,0,1,0,0,0,0]
e unitfSubsystem_vx) = [1,0,-1,0,0,0,0)
unitttheta) = [0,0,0,0,0,0,0]

unit(Subsystem_t1) = [0,0,1

e Type-system for Simulink

User Given Types
Unit Checking

Type Annotation and Checking Expressive Type Systems
Compatibility Checking

Test-case Generation

Dependent Types and Refinement Types

@ Refinement types : capture constraints on the signals to a function e.g.
odd integer, non-zero divisor

@ Dependent types : capture dependency between input ports or output
port and input ports

OutTemp

>
70 [P

Ref

v s | Temp

{htemp

1)
0)
onfo] temp temp
> on
»{HouseTemp House
heater

Heater

Thermostat
TouseTemp TouseTemp

out

OutSideTemp

Figure: Thermostat Example with Dependent and RefinementTypes

imCheck : An Expressive Type-system for Simulink

User Given Types
Unit Checking
Type Annotation and Checking Expressive Type Systems
Compatibility Checking

Test-case Generation

Typechecking Incompatibility

@ Two components may have different input assumptions and output
guarantees

@ May not work together
@ If SMT solver returns UNSAT then there is no environment

1 _]w_’

Constant = P

X

Divide [iinv (s 0)|

0

Constant1

Pritam Roy, i eck : An Expressive Type-system for Simulink

User Given Types
Unit Checking

Type Annotation and Checking Expressive Type Systems
Compatibility Checking

Test-case Generation

Test Case Generation

@ For each signal s and constraint Ps(s) , we want to show that
= Ps(8) A Arszs Pr(r).

@ Yices solver returns either a negative answer (unsat) or a positive
answer with a satisfying variable assignment.

Display1

type checker failed for this inputs
1
9
5

Display2

X
X
X

Pritam Roy, N. nkar SimCheck : An Expressive Type-system for Simulink

Property Verification

Outline

e Property Verification

Pritam Roy, N. i 5 i stem for Simulink

Property Verification

Property Verification

Bounded Model Checking

1. transition(1, k + 1) = dump2yices(model, vBlocks, k)

2. Y =Vge(iz,. kt1}Pd
3. check-sat(transition,)

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Property Verification

Property Verification

Bounded Model Checking

1. transition(1, k + 1) = dump2yices(model, vBlocks, k)

2. Y =Vge(iz,. kt1}Pd
3. check-sat(transition,)

K-induction
1. transition(1, k + 1) = dump2yices(model, vBlocks, k)

2. = (Ndeqr2,... kybd) N i1
3. check-sat (transition,))

Pritam Roy, N. Shankar SimCheck : An Expressive Type-system for Simulink

Related Work

Future Directions

Conclusions
Conclusion

Outline

e Conclusion

Pritam Roy, N An Expressive Typ stem for Simulink

Related Work

Future Directions

Conclusions
Conclusion

Related Tools

@ Reactis : test generation and simulation of test cases including
embedded C code.

@ Mathworks SDV : test generation and prove and refute functional
properties.

@ CheckMate : analysis of properties of hybrid systems using a finite state
abstraction of the dynamics.

SimCheck : An Expressive Type-system for Simulink

Related Work

Future Directions

Conclusions
Conclusion

Related Tools

@ HILITE : use of static analysis of input range for generation of
test-cases, detection of ambiguities and divide-by-zero errors,
robustness, and unreachable code.

@ Simulink-to-Lustre : translation for type inference on Simulink models
and the resulting Lustre output can be analyzed using model checkers.

@ Gryphon : a number of tools, including model checkers, for analysis of
Simulink/Stateflow models.

@ kind : bounded model checking, k-induction

SimCheck : An Expressive Type-system for Simulink

Related Work

Future Directions

Conclusions
Conclusion

Future Directions

@ Interface types to capture temporal input-output behavior of Stateflow

@ Map the bounded integers to their fixed-point representations or bit
vectors.

@ Reason about Matlab functions blocks via static analysis

@ Cover other properties such as the robustness, error bounds for floating
point computations,

@ \Verification of model/code correspondence through the use of test
cases

@ Translate Simulink models to SAL and HybridSAL for symbolic analysis

SimCheck : An Expressive Type-system for Simulink

Related Work

Future Directions

Conclusions
Conclusion

Conclusions

@ Type system capture constraints, dimensions and units of signals, and
the relationships between signals.

@ Annotations expressed in the constraint language of Yices
@ Proof obligations translated to constraint solver

@ Obligations used to check compatibility w.r.t. dimensions, generate
counterexamples and test cases, and to prove type correctness.

@ Yices performs BMC and k-induction to refute or verify type invariants.

@ Eventual goal is to use this capability to certify the correctness of such
systems and monitor type conformance

SimCheck : An Expressive Type-system for Simulink

Related Work
Future Directions
Conclusions

Conclusion

Thank You

Pritam Roy, N An Expressive Typ stem for Simulink

	Introduction
	Simulink as a Model
	Type Checking

	Model Translation to Yices
	Yices
	MDL2YICES

	Type Annotation and Checking
	User Given Types
	Unit Checking
	Expressive Type Systems
	Compatibility Checking
	Test-case Generation

	Property Verification
	Conclusion
	Related Work
	Future Directions
	Conclusions

